Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Pathol ; 193(12): 1969-1987, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37717940

RESUMO

A gradual decline in renal function occurs even in healthy aging individuals. In addition to aging, per se, concurrent metabolic syndrome and hypertension, which are common in the aging population, can induce mitochondrial dysfunction and inflammation, which collectively contribute to age-related kidney dysfunction and disease. This study examined the role of the nuclear hormone receptors, the estrogen-related receptors (ERRs), in regulation of age-related mitochondrial dysfunction and inflammation. The ERRs were decreased in both aging human and mouse kidneys and were preserved in aging mice with lifelong caloric restriction (CR). A pan-ERR agonist, SLU-PP-332, was used to treat 21-month-old mice for 8 weeks. In addition, 21-month-old mice were treated with a stimulator of interferon genes (STING) inhibitor, C-176, for 3 weeks. Remarkably, similar to CR, an 8-week treatment with a pan-ERR agonist reversed the age-related increases in albuminuria, podocyte loss, mitochondrial dysfunction, and inflammatory cytokines, via the cyclic GMP-AMP synthase-STING and STAT3 signaling pathways. A 3-week treatment of 21-month-old mice with a STING inhibitor reversed the increases in inflammatory cytokines and the senescence marker, p21/cyclin dependent kinase inhibitor 1A (Cdkn1a), but also unexpectedly reversed the age-related decreases in PPARG coactivator (PGC)-1α, ERRα, mitochondrial complexes, and medium chain acyl coenzyme A dehydrogenase (MCAD) expression. These studies identified ERRs as CR mimetics and as important modulators of age-related mitochondrial dysfunction and inflammation. These findings highlight novel druggable pathways that can be further evaluated to prevent progression of age-related kidney disease.


Assuntos
Inflamação , Rim , Camundongos , Humanos , Animais , Idoso , Lactente , Recém-Nascido , Rim/metabolismo , Inflamação/metabolismo , Estrogênios/metabolismo , Mitocôndrias/metabolismo , Citocinas/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
2.
J Biol Chem ; 299(8): 104975, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37429506

RESUMO

Diabetes mellitus is the leading cause of cardiovascular and renal disease in the United -States. Despite the beneficial interventions available for patients with diabetes, there remains a need for additional therapeutic targets and therapies in diabetic kidney disease (DKD). Inflammation and oxidative stress are increasingly recognized as important causes of renal diseases. Inflammation is closely associated with mitochondrial damage. The molecular connection between inflammation and mitochondrial metabolism remains to be elucidated. Recently, nicotinamide adenine nucleotide (NAD+) metabolism has been found to regulate immune function and inflammation. In the present studies, we tested the hypothesis that enhancing NAD metabolism could prevent inflammation in and progression of DKD. We found that treatment of db/db mice with type 2 diabetes with nicotinamide riboside (NR) prevented several manifestations of kidney dysfunction (i.e., albuminuria, increased urinary kidney injury marker-1 (KIM1) excretion, and pathologic changes). These effects were associated with decreased inflammation, at least in part via inhibiting the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway. An antagonist of the serum stimulator of interferon genes (STING) and whole-body STING deletion in diabetic mice showed similar renoprotection. Further analysis found that NR increased SIRT3 activity and improved mitochondrial function, which led to decreased mitochondrial DNA damage, a trigger for mitochondrial DNA leakage which activates the cGAS-STING pathway. Overall, these data show that NR supplementation boosted NAD metabolism to augment mitochondrial function, reducing inflammation and thereby preventing the progression of diabetic kidney disease.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Camundongos , Animais , Nefropatias Diabéticas/metabolismo , NAD/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/metabolismo , Mitocôndrias/metabolismo , DNA Mitocondrial/metabolismo , Nucleotidiltransferases/metabolismo , Inflamação/metabolismo , Interferons/metabolismo
3.
Front Microbiol ; 14: 1072053, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323901

RESUMO

Environmental perturbations evoke down-regulation of metabolism in some multicellular organisms, leading to dormancy, or torpor. Colonies of the urochordate Botrylloides leachii enter torpor in response to changes in seawater temperature and may survive for months as small vasculature remnants that lack feeding and reproductive organs but possess torpor-specific microbiota. Upon returning to milder conditions, the colonies rapidly restore their original morphology, cytology and functionality while harboring re-occurring microbiota, a phenomenon that has not been described in detail to date. Here we investigated the stability of B. leachii microbiome and its functionality in active and dormant colonies, using microscopy, qPCR, in situ hybridization, genomics and transcriptomics. A novel lineage of Endozoicomonas, proposed here as Candidatus Endozoicomonas endoleachii, was dominant in torpor animals (53-79% read abundance), and potentially occupied specific hemocytes found only in torpid animals. Functional analysis of the metagenome-assembled genome and genome-targeted transcriptomics revealed that Endozoicomonas can use various cellular substrates, like amino acids and sugars, potentially producing biotin and thiamine, but also expressing various features involved in autocatalytic symbiosis. Our study suggests that the microbiome can be linked to the metabolic and physiological states of the host, B. leachii, introducing a model organism for the study of symbioses during drastic physiological changes, such as torpor.

4.
Dev Biol ; 490: 22-36, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35809632

RESUMO

Harsh environments enforce the expression of behavioural, morphological, physiological, and reproductive rejoinders, including torpor. Here we study the morphological, cellular, and molecular alterations in torpor architype in the colonial urochordate Botrylloides aff. leachii by employing whole organism Transmission electron (TEM) and light microscope observations, RNA sequencing, real-time polymerase chain reaction (qPCR) quantification of selected genes, and immunolocalization of WNT, SMAD and SOX2 gene expressions. On the morphological level, torpor starts with gradual regression of all zooids and buds which leaves the colony surviving as condensed vasculature remnants that may be 'aroused' to regenerate fully functional colonies upon changes in the environment. Simultaneously, we observed altered distributions of hemolymph cell types. Phagocytes doubled in number, while the number of morula cells declined by half. In addition, two new circulating cell types were observed, multi-nucleated and bacteria-bearing cells. RNA sequencing technology revealed marked differences in gene expression between different organism compartments and states: active zooids and ampullae, and between mid-torpor and naive colonies, or naive and torpid colonies. Gene Ontology term enrichment analyses further showed disparate biological processes. In torpid colonies, we observed overall 233 up regulated genes. These genes included NR4A2, EGR1, MUC5AC, HMCN2 and. Also, 27 transcription factors were upregulated in torpid colonies including ELK1, HDAC3, RBMX, MAZ, STAT1, STAT4 and STAT6. Interestingly, genes involved in developmental processes such as SPIRE1, RHOA, SOX11, WNT5A and SNX18 were also upregulated in torpid colonies. We further validated the dysregulation of 22 genes during torpor by utilizing qPCR. Immunohistochemistry of representative genes from three signaling pathways revealed high expression of these genes in circulated cells along torpor. WNT agonist administration resulted in early arousal from torpor in 80% of the torpid colonies while in active colonies WNT agonist triggered the torpor state. Abovementioned results thus connote unique transcriptome landscapes associated with Botrylloides leachii torpor.


Assuntos
Torpor , Urocordados , Animais , Sequência de Bases , Transdução de Sinais/genética , Torpor/genética , Transcriptoma/genética , Urocordados/fisiologia
5.
Cell ; 184(25): 6037-6051.e14, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34852237

RESUMO

RNA viruses generate defective viral genomes (DVGs) that can interfere with replication of the parental wild-type virus. To examine their therapeutic potential, we created a DVG by deleting the capsid-coding region of poliovirus. Strikingly, intraperitoneal or intranasal administration of this genome, which we termed eTIP1, elicits an antiviral response, inhibits replication, and protects mice from several RNA viruses, including enteroviruses, influenza, and SARS-CoV-2. While eTIP1 replication following intranasal administration is limited to the nasal cavity, its antiviral action extends non-cell-autonomously to the lungs. eTIP1 broad-spectrum antiviral effects are mediated by both local and distal type I interferon responses. Importantly, while a single eTIP1 dose protects animals from SARS-CoV-2 infection, it also stimulates production of SARS-CoV-2 neutralizing antibodies that afford long-lasting protection from SARS-CoV-2 reinfection. Thus, eTIP1 is a safe and effective broad-spectrum antiviral generating short- and long-term protection against SARS-CoV-2 and other respiratory infections in animal models.


Assuntos
Proteínas do Capsídeo/genética , Vírus Defeituosos Interferentes/metabolismo , Replicação Viral/efeitos dos fármacos , Administração Intranasal , Animais , Antivirais/farmacologia , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Amplamente Neutralizantes/farmacologia , COVID-19 , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Vírus Defeituosos Interferentes/patogenicidade , Modelos Animais de Doenças , Genoma Viral/genética , Humanos , Influenza Humana , Interferons/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Poliovirus/genética , Poliovirus/metabolismo , Infecções Respiratórias/virologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade
6.
Life (Basel) ; 11(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34833110

RESUMO

Repetitive elements (RE) and transposons (TE) can comprise up to 80% of some plant genomes and may be essential for regulating their evolution and adaptation. The "repeatome" information is often unavailable in assembled genomes because genomic areas of repeats are challenging to assemble and are often missing from final assembly. However, raw genomic sequencing data contain rich information about RE/TEs. Here, raw genomic NGS reads of 10 gymnosperm species were studied for the content and abundance patterns of their "repeatome". We utilized a combination of alignment on databases of repetitive elements and de novo assembly of highly repetitive sequences from genomic sequencing reads to characterize and calculate the abundance of known and putative repetitive elements in the genomes of 10 conifer plants: Pinus taeda, Pinus sylvestris, Pinus sibirica, Picea glauca, Picea abies, Abies sibirica, Larix sibirica, Juniperus communis, Taxus baccata, and Gnetum gnemon. We found that genome abundances of known and newly discovered putative repeats are specific to phylogenetically close groups of species and match biological taxa. The grouping of species based on abundances of known repeats closely matches the grouping based on abundances of newly discovered putative repeats (kChains) and matches the known taxonomic relations.

7.
J Virol ; 95(22): e0097721, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34468175

RESUMO

Here, we examine in silico the infection dynamics and interactions of two Zika virus (ZIKV) genomes: one is the full-length ZIKV genome (wild type [WT]), and the other is one of the naturally occurring defective viral genomes (DVGs), which can replicate in the presence of the WT genome, appears under high-MOI (multiplicity of infection) passaging conditions, and carries a deletion encompassing part of the structural and NS1 protein-coding region. Ordinary differential equations (ODEs) were used to simulate the infection of cells by virus particles and the intracellular replication of the WT and DVG genomes that produce these particles. For each virus passage in Vero and C6/36 cell cultures, the rates of the simulated processes were fitted to two types of observations: virus titer data and the assembled haplotypes of the replicate passage samples. We studied the consistency of the model with the experimental data across all passages of infection in each cell type separately as well as the sensitivity of the model's parameters. We also determined which simulated processes of virus evolution are the most important for the adaptation of the WT and DVG interplay in these two disparate cell culture environments. Our results demonstrate that in the majority of passages, the rates of DVG production are higher inC6/36 cells than in Vero cells, which might result in tolerance and therefore drive the persistence of the mosquito vector in the context of ZIKV infection. Additionally, the model simulations showed a slower accumulation of infected cells under higher activation of the DVG-associated processes, which indicates a potential role of DVGs in virus attenuation. IMPORTANCE One of the ideas for lessening Zika pathogenicity is the addition of its natural or engineered defective virus genomes (DVGs) (have no pathogenicity) to the infection pool: a DVG is redirecting the wild-type (WT)-associated virus development resources toward its own maturation. The mathematical model presented here, attuned to the data from interplays between WT Zika viruses and their natural DVGs in mammalian and mosquito cells, provides evidence that the loss of uninfected cells is attenuated by the DVG development processes. This model enabled us to estimate the rates of virus development processes in the WT/DVG interplay, determine the key processes, and show that the key processes are faster in mosquito cells than in mammalian ones. In general, the presented model and its detailed study suggest in what important virus development processes the therapeutically efficient DVG might compete with the WT; this may help in assembling engineered DVGs for ZIKV and other flaviviruses.


Assuntos
Vírus Defeituosos , Interações entre Hospedeiro e Microrganismos , Infecção por Zika virus/virologia , Zika virus , Aedes , Animais , Chlorocebus aethiops , Vírus Defeituosos/crescimento & desenvolvimento , Vírus Defeituosos/patogenicidade , Células Vero , Replicação Viral , Zika virus/crescimento & desenvolvimento , Zika virus/patogenicidade
8.
Aging (Albany NY) ; 13(18): 21814-21837, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34587118

RESUMO

Canines represent a valuable model for mammalian aging studies as large animals with short lifespans, allowing longitudinal analyses within a reasonable time frame. Moreover, they develop a spectrum of aging-related diseases resembling that of humans, are exposed to similar environments, and have been reasonably well studied in terms of physiology and genetics. To overcome substantial variables that complicate studies of privately-owned household dogs, we have focused on a more uniform population composed of retired Alaskan sled dogs that shared similar lifestyles, including exposure to natural stresses, and are less prone to breed-specific biases than a pure breed population. To reduce variability even further, we have collected a population of 103 retired (8-11 years-old) sled dogs from multiple North American kennels in a specialized research facility named Vaika. Vaika dogs are maintained under standardized conditions with professional veterinary care and participate in a multidisciplinary program to assess the longitudinal dynamics of aging. The established Vaika infrastructure enables periodic gathering of quantitative data reflecting physical, physiological, immunological, neurological, and cognitive decline, as well as monitoring of aging-associated genetic and epigenetic alterations occurring in somatic cells. In addition, we assess the development of age-related diseases such as arthritis and cancer. In-depth data analysis, including artificial intelligence-based approaches, will build a comprehensive, integrated model of canine aging and potentially identify aging biomarkers that will allow use of this model for future testing of antiaging therapies.


Assuntos
Envelhecimento/fisiologia , Modelos Animais de Doenças , Cães , Envelhecimento/genética , Envelhecimento/imunologia , Envelhecimento/psicologia , Animais , Inteligência Artificial , Cognição , Cães/genética , Cães/crescimento & desenvolvimento , Cães/imunologia , Cães/fisiologia , Genoma , Humanos , Sistema Imunitário/imunologia , Longevidade
9.
Nat Commun ; 12(1): 2290, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863888

RESUMO

Arthropod-borne viruses pose a major threat to global public health. Thus, innovative strategies for their control and prevention are urgently needed. Here, we exploit the natural capacity of viruses to generate defective viral genomes (DVGs) to their detriment. While DVGs have been described for most viruses, identifying which, if any, can be used as therapeutic agents remains a challenge. We present a combined experimental evolution and computational approach to triage DVG sequence space and pinpoint the fittest deletions, using Zika virus as an arbovirus model. This approach identifies fit DVGs that optimally interfere with wild-type virus infection. We show that the most fit DVGs conserve the open reading frame to maintain the translation of the remaining non-structural proteins, a characteristic that is fundamental across the flavivirus genus. Finally, we demonstrate that the high fitness DVG is antiviral in vivo both in the mammalian host and the mosquito vector, reducing transmission in the latter by up to 90%. Our approach establishes the method to interrogate the DVG fitness landscape, and enables the systematic identification of DVGs that show promise as human therapeutics and vector control strategies to mitigate arbovirus transmission and disease.


Assuntos
Antivirais/administração & dosagem , Vírus Defeituosos/genética , Mosquitos Vetores/efeitos dos fármacos , Infecção por Zika virus/tratamento farmacológico , Zika virus/genética , Aedes/efeitos dos fármacos , Aedes/virologia , Animais , Chlorocebus aethiops , Biologia Computacional , Evolução Molecular Direcionada , Modelos Animais de Doenças , Feminino , Aptidão Genética , Genoma Viral/genética , Células HEK293 , Humanos , Camundongos , Controle de Mosquitos/métodos , Mosquitos Vetores/virologia , Fases de Leitura Aberta/genética , RNA Viral/genética , Células Vero , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia
10.
Proc Natl Acad Sci U S A ; 117(51): 32499-32508, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33277437

RESUMO

Speciation mechanisms remain controversial. Two speciation models occur in Israeli subterranean mole rats, genus Spalax: a regional speciation cline southward of four peripatric climatic chromosomal species and a local, geologic-edaphic, genic, and sympatric speciation. Here we highlight their genome evolution. The five species were separated into five genetic clusters by single nucleotide polymorphisms, copy number variations (CNVs), repeatome, and methylome in sympatry. The regional interspecific divergence correspond to Pleistocene climatic cycles. Climate warmings caused chromosomal speciation. Triple effective population size, Ne , declines match glacial cold cycles. Adaptive genes evolved under positive selection to underground stresses and to divergent climates, involving interspecies reproductive isolation. Genomic islands evolved mainly due to adaptive evolution involving ancient polymorphisms. Repeatome, including both CNV and LINE1 repetitive elements, separated the five species. Methylation in sympatry identified geologically chalk-basalt species that differentially affect thermoregulation, hypoxia, DNA repair, P53, and other pathways. Genome adaptive evolution highlights climatic and geologic-edaphic stress evolution and the two speciation models, peripatric and sympatric.


Assuntos
Evolução Biológica , Spalax/genética , Simpatria , Adaptação Biológica , Animais , Variações do Número de Cópias de DNA , Epigênese Genética , Evolução Molecular , Fluxo Gênico , Variação Genética , Genética Populacional , Genoma , Israel , Desequilíbrio de Ligação , Masculino , Polimorfismo de Nucleotídeo Único , Isolamento Reprodutivo , Spalax/fisiologia
11.
PLoS Biol ; 16(11): e2006577, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30496178

RESUMO

The interferon (IFN)-mediated innate immune response is the first line of defense against viruses. However, an IFN-stimulated gene, the adenosine deaminase acting on RNA 1 (ADAR1), favors the replication of several viruses. ADAR1 binds double-stranded RNA and converts adenosine to inosine by deamination. This form of editing makes duplex RNA unstable, thereby preventing IFN induction. To better understand how ADAR1 works at the cellular level, we generated cell lines that express exclusively either the IFN-inducible, cytoplasmic isoform ADAR1p150, the constitutively expressed nuclear isoform ADAR1p110, or no isoform. By comparing the transcriptome of these cell lines, we identified more than 150 polymerase II transcripts that are extensively edited, and we attributed most editing events to ADAR1p150. Editing is focused on inverted transposable elements, located mainly within introns and untranslated regions, and predicted to form duplex RNA structures. Editing of these elements occurs also in primary human samples, and there is evidence for cross-species evolutionary conservation of editing patterns in primates and, to a lesser extent, in rodents. Whereas ADAR1p150 rarely edits tightly encapsidated standard measles virus (MeV) genomes, it efficiently edits genomes with inverted repeats accidentally generated by a mutant MeV. We also show that immune activation occurs in fully ADAR1-deficient (ADAR1KO) cells, restricting virus growth, and that complementation of these cells with ADAR1p150 rescues virus growth and suppresses innate immunity activation. Finally, by knocking out either protein kinase R (PKR) or mitochondrial antiviral signaling protein (MAVS)-another protein controlling the response to duplex RNA-in ADAR1KO cells, we show that PKR activation elicits a stronger antiviral response. Thus, ADAR1 prevents innate immunity activation by cellular transcripts that include extensive duplex RNA structures. The trade-off is that viruses take advantage of ADAR1 to elude innate immunity control.


Assuntos
Adenosina Desaminase/fisiologia , Vírus de RNA/genética , Proteínas de Ligação a RNA/fisiologia , Adenosina/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Células HeLa , Humanos , Imunidade Inata/fisiologia , Interferons/metabolismo , Isoformas de Proteínas , Provírus/genética , Provírus/imunologia , Vírus de RNA/metabolismo , RNA de Cadeia Dupla/fisiologia , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transcriptoma/genética , Vírion/genética
13.
Nat Commun ; 8(1): 375, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851882

RESUMO

RNA viruses, such as poliovirus, have a great evolutionary capacity, allowing them to quickly adapt and overcome challenges encountered during infection. Here we show that poliovirus infection in immune-competent mice requires adaptation to tissue-specific innate immune microenvironments. The ability of the virus to establish robust infection and virulence correlates with its evolutionary capacity. We further identify a region in the multi-functional poliovirus protein 2B as a hotspot for the accumulation of minor alleles that facilitate a more effective suppression of the interferon response. We propose that population genetic dynamics enables poliovirus spread between tissues through optimization of the genetic composition of low frequency variants, which together cooperate to circumvent tissue-specific challenges. Thus, intrahost virus evolution determines pathogenesis, allowing a dynamic regulation of viral functions required to overcome barriers to infection.RNA viruses, such as polioviruses, have a great evolutionary capacity and can adapt quickly during infection. Here, the authors show that poliovirus infection in mice requires adaptation to innate immune microenvironments encountered in different tissues.


Assuntos
Imunidade Inata/imunologia , Especificidade de Órgãos/imunologia , Poliomielite/imunologia , Poliovirus/imunologia , Animais , Antivirais/farmacologia , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Evolução Molecular , Perfilação da Expressão Gênica/métodos , Células HeLa , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Interferons/farmacologia , Camundongos Knockout , Camundongos Transgênicos , Mutação , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Poliomielite/genética , Poliomielite/virologia , Poliovirus/genética , Poliovirus/patogenicidade , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Virulência/genética , Virulência/imunologia
14.
RNA Biol ; 14(11): 1508-1513, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-28665784

RESUMO

MicroRNAs are short RNA molecules that regulate function and stability of a large subset of eukaryotic mRNAs. In the main pathway of microRNA biogenesis, a short "hairpin" is excised from a primary transcript by ribonuclease DROSHA, followed by additional nucleolytic processing by DICER and inclusion of the mature microRNA into the RNA-induced silencing complex. We report that a microRNA-like molecule is encoded by human DROSHA gene within a predicted stem-loop element of the respective transcript. This putative mature microRNA is complementary to DROSHA transcript variant 1 and can attenuate expression of the corresponding protein. The findings suggest a possibility for a negative feedback loop, wherein DROSHA processes its own transcript and produces an inhibitor of its own biosynthesis.


Assuntos
RNA Helicases DEAD-box/genética , MicroRNAs/genética , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , Complexo de Inativação Induzido por RNA/genética , Ribonuclease III/genética , Pareamento de Bases , Sequência de Bases , Linhagem Celular Transformada , RNA Helicases DEAD-box/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Células HEK293 , Humanos , MicroRNAs/metabolismo , Conformação de Ácido Nucleico , RNA Mensageiro/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Ribonuclease III/metabolismo
15.
Nucleic Acids Res ; 45(4): 1925-1945, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28082391

RESUMO

Transitions of B-DNA to alternative DNA structures (ADS) can be triggered by negative torsional strain, which occurs during replication and transcription, and may lead to genomic instability. However, how ADS are recognized in cells is unclear. We found that the binding of candidate anticancer drug, curaxin, to cellular DNA results in uncoiling of nucleosomal DNA, accumulation of negative supercoiling and conversion of multiple regions of genomic DNA into left-handed Z-form. Histone chaperone FACT binds rapidly to the same regions via the SSRP1 subunit in curaxin-treated cells. In vitro binding of purified SSRP1 or its isolated CID domain to a methylated DNA fragment containing alternating purine/pyrimidines, which is prone to Z-DNA transition, is much stronger than to other types of DNA. We propose that FACT can recognize and bind Z-DNA or DNA in transition from a B to Z form. Binding of FACT to these genomic regions triggers a p53 response. Furthermore, FACT has been shown to bind to other types of ADS through a different structural domain, which also leads to p53 activation. Thus, we propose that FACT acts as a sensor of ADS formation in cells. Recognition of ADS by FACT followed by a p53 response may explain the role of FACT in DNA damage prevention.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/química , DNA/genética , Células Eucarióticas/metabolismo , Conformação de Ácido Nucleico , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , DNA/metabolismo , Humanos , Repetições de Microssatélites , Modelos Biológicos , Nucleossomos/genética , Nucleossomos/metabolismo , Ligação Proteica , Subunidades Proteicas , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
16.
Cell Host Microbe ; 19(4): 493-503, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27078068

RESUMO

Mutation and recombination are central processes driving microbial evolution. A high mutation rate fuels adaptation but also generates deleterious mutations. Recombination between two different genomes may resolve this paradox, alleviating effects of clonal interference and purging deleterious mutations. Here we demonstrate that recombination significantly accelerates adaptation and evolution during acute virus infection. We identified a poliovirus recombination determinant within the virus polymerase, mutation of which reduces recombination rates without altering replication fidelity. By generating a panel of variants with distinct mutation rates and recombination ability, we demonstrate that recombination is essential to enrich the population in beneficial mutations and purge it from deleterious mutations. The concerted activities of mutation and recombination are key to virus spread and virulence in infected animals. These findings inform a mathematical model to demonstrate that poliovirus adapts most rapidly at an optimal mutation rate determined by the trade-off between selection and accumulation of detrimental mutations.


Assuntos
Poliomielite/virologia , Poliovirus/genética , Poliovirus/patogenicidade , RNA Viral/genética , Recombinação Genética , Adaptação Fisiológica , Animais , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Evolução Molecular , Humanos , Poliovirus/enzimologia , Poliovirus/fisiologia , RNA Viral/metabolismo , Seleção Genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência , Replicação Viral
17.
Psychoneuroendocrinology ; 39: 121-131, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24275011

RESUMO

Oxytocin is a nine amino acid neuropeptide that is known to play a critical role in fetal expulsion and breast-feeding, and has been recently implicated in mammalian social behavior. The actions of both central and peripheral oxytocin are mediated through the oxytocin receptor (Oxtr), which is encoded by a single gene. In contrast to the highly conserved expression of oxytocin in specific hypothalamic nuclei, the expression of its receptor in the brain is highly diverse among different mammalian species or even within individuals of the same species. The diversity in the pattern of brain Oxtr expression among mammals is thought to contribute to the broad range of social systems and organizations. Yet, the mechanisms underlying this diversity are poorly understood. DNA methylation is a major epigenetic mechanism that regulates gene transcription, and has been linked to reduced expression levels of the Oxtr in individuals with autism. Here we hypothesize that DNA methylation is involved in the expression regulation of Oxtr in the mouse brain. By combining bisulfite DNA conversion and Next-Generation Sequencing we found that specific CpG sites are differentially methylated between distinct brain regions expressing different levels of Oxtr mRNA. Some of these CpG sites are located within putative binding sites of transcription factors known to regulate Oxtr expression, including estrogen receptor α (ERα) and SP1. Specifically, methylation of the SP1 site was found to positively correlate with Oxtr expression. Furthermore, we revealed that the methylation levels of these sites in the various brain regions predict the relationship between ERα and Oxtr mRNA levels. Collectively, our results suggest that brain region-specific expression of the mouse Oxtr gene is epigenetically regulated by DNA methylation of its promoter.


Assuntos
Encéfalo/metabolismo , Metilação de DNA , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Receptores de Ocitocina/genética , Animais , Epigênese Genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Masculino , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Ocitocina/metabolismo
18.
Nature ; 505(7485): 686-90, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24284629

RESUMO

RNA viruses exist as genetically diverse populations. It is thought that diversity and genetic structure of viral populations determine the rapid adaptation observed in RNA viruses and hence their pathogenesis. However, our understanding of the mechanisms underlying virus evolution has been limited by the inability to accurately describe the genetic structure of virus populations. Next-generation sequencing technologies generate data of sufficient depth to characterize virus populations, but are limited in their utility because most variants are present at very low frequencies and are thus indistinguishable from next-generation sequencing errors. Here we present an approach that reduces next-generation sequencing errors and allows the description of virus populations with unprecedented accuracy. Using this approach, we define the mutation rates of poliovirus and uncover the mutation landscape of the population. Furthermore, by monitoring changes in variant frequencies on serially passaged populations, we determined fitness values for thousands of mutations across the viral genome. Mapping of these fitness values onto three-dimensional structures of viral proteins offers a powerful approach for exploring structure-function relationships and potentially uncovering new functions. To our knowledge, our study provides the first single-nucleotide fitness landscape of an evolving RNA virus and establishes a general experimental platform for studying the genetic changes underlying the evolution of virus populations.


Assuntos
Análise Mutacional de DNA/métodos , Aptidão Genética/genética , Mutação/genética , Poliovirus/genética , Análise Mutacional de DNA/normas , Evolução Molecular , Células HeLa , Humanos , Modelos Moleculares , Taxa de Mutação , Poliovirus/química , Poliovirus/crescimento & desenvolvimento , Controle de Qualidade , Relação Estrutura-Atividade
19.
Environ Microbiol ; 15(9): 2532-44, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23763278

RESUMO

Bacteria often use sophisticated cooperative behaviours, such as the development of complex colonies, elaborate biofilms and advanced dispersal strategies, to cope with the harsh and variable conditions of natural habitats, including the presence of antibiotics. Paenibacillus vortex uses swarming motility and cell-to-cell communication to form complex, structured colonies. The modular organization of P. vortex colony has been found to facilitate its dispersal on agar surfaces. The current study reveals that the complex structure of the colony is generated by the coexistence and transition between two morphotypes--'builders' and 'explorers'--with distinct functions in colony formation. Here, we focused on the explorers, which are highly motile and spearhead colonial expansion. Explorers are characterized by high expression levels of flagellar genes, such as flagellin (hag), motA, fliI, flgK and sigD, hyperflagellation, decrease in ATP (adenosine-5'-triphosphate) levels, and increased resistance to antibiotics. Their tolerance to many antibiotics gives them the advantage of translocation through antibiotics-containing areas. This work gives new insights on the importance of cell differentiation and task distribution in colony morphogenesis and adaptation to antibiotics.


Assuntos
Antibacterianos/farmacologia , Paenibacillus/efeitos dos fármacos , Paenibacillus/fisiologia , Trifosfato de Adenosina/metabolismo , Ágar , Biofilmes , Flagelos/genética , Regulação Bacteriana da Expressão Gênica , Canamicina/farmacologia
20.
Proc Natl Acad Sci U S A ; 110(13): E1232-41, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23476065

RESUMO

Metabolite composition offers a powerful tool for understanding gene function and regulatory processes. However, metabolomics studies on multicellular organisms have thus far been performed primarily on whole organisms, organs, or cell lines, losing information about individual cell types within a tissue. With the goal of profiling metabolite content in different cell populations within an organ, we used FACS to dissect GFP-marked cells from Arabidopsis roots for metabolomics analysis. Here, we present the metabolic profiles obtained from five GFP-tagged lines representing core cell types in the root. Fifty metabolites were putatively identified, with the most prominent groups being glucosinolates, phenylpropanoids, and dipeptides, the latter of which is not yet explored in roots. The mRNA expression of enzymes or regulators in the corresponding biosynthetic pathways was compared with the relative metabolite abundance. Positive correlations suggest that the rate-limiting steps in biosynthesis of glucosinolates in the root are oxidative modifications of side chains. The current study presents a work flow for metabolomics analyses of cell-type populations.


Assuntos
Arabidopsis/citologia , Arabidopsis/metabolismo , Metaboloma/fisiologia , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/metabolismo , RNA Mensageiro/biossíntese , RNA de Plantas/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...